regdiffusion.data.load_beeline#
- regdiffusion.data.load_beeline(data_dir='data', benchmark_data='hESC', benchmark_setting='500_STRING')[source]#
Load BEELINE data and its ground truth (download if necessary).
Paper: Benchmarking algorithms for gene regulatory network inference from single-cell transcriptomic data Paper Link: https://www.nature.com/articles/s41592-019-0690-6
BEELINE consists of 7 single-cell datasets (
hESC
,hHep
,mDC
,mESC
,mHSC
,mHSC-GM
, andmHSC-L
) and 3 sets of ground truth networks (STRING
,Non-ChIP
,ChIP-seq
).- Parameters:
data_dir (str) – Parent directory to save and load the data. If the path
exist (does not)
a (it will be created. Data will be saved in)
path. (subdirectory under the provided)
benchmark_data (str) – Benchmark datasets. Choose among “hESC”, “hHep”,
"mDC"
"mESC"
"mHSC"
"mHSC-GM"
"mHSC-L". (and)
benchmark_setting (str) – Benchmark settings. Choose among “500_STRING”,
"1000_STRING"
"500_Non-ChIP"
"1000_Non-ChIP"
"500_ChIP-seq"
:param : :param “1000_ChIP-seq”: :param “500_lofgof”: :param and “1000_lofgof”. If either of the: :param “lofgof” settings is choosed: :param only “mESC” data is available.:
- Returns:
A tuple containing two objects for a single BEELINE benchmark. The first element is a scanpy AnnData with cells on rows and genes on columns. Second element is an numpy array for the adjacency list of the ground truth network.
- Return type:
tuple